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Abstract

In this thesis we investigate a method of simulating realistic spectral depth of field
in screen space. We propose the direct application of Seidel aberrations (Von Seidel ,
1857) to incoming light rays, which is a new application of a well-known concept
in optics. Our aim is to use this limited set of aberrations to offer artists intuitive
control over complex lens effects without necessarily requiring lens designs. Existing
implementations do require lens designs, but they are often hard or impossible to
obtain. Some state-of-the-art implementations are incapable of rendering these effects
altogether and resort to uniform disk- or sprite-shaped bokeh. We apply Gaussian
optics theory extended with Seidel aberrations to scatter light rays to the screen
in order to simulate the depth of field generated by different lens designs. In most
test cases, our method approaches spectral ray tracing considerably better, both
visually and in terms of quantitative image comparison metrics, than when using only
Gaussian optics. In addition, we can reduce the number of non-intuitively wavelength-
dependent lens parameters from seven to three, while achieving similar results. Our
implementation runs in constant time for each ray, while ray tracing would run in
linear time, scaling with the number of lens surfaces. When realistic depth of field
is desired, our implementation can be used as a more time-efficient alternative to
primary ray generation in most ray tracing frameworks.
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Chapter 1

Introduction

Depth of field (DOF) is a term originating from photography, and refers to the range of in-focus
distances in an image. Any object outside of this range will be visibly blurred. Depth of field is
an effect intrinsic to any lens, and is frequently used as both a storytelling and artistic tool in
photography, cinematography and games. It is commonly used to direct the viewer’s attention by
choosing which parts of the scene are in focus and which ones are blurred. An example of depth
of field in a photograph is shown in Figure 1.1.

Figure 1.1: A photograph, demonstrating depth of field (image from https://www.flickr.com/

photos/rromer/5192805854)

Because of its applicability as a storytelling and artistic tool, depth of field simulation is com-
monplace in computer graphics. Simulating depth of field can be done accurately by applying
distribution ray tracing to lens designs (Kolb et al., 1995), where many light rays are simulated
as they pass through some lens system, ending up on a certain pixel on an imaging sensor. Often
though, scenes are rendered using a pinhole camera model, which does not produce any depth of
field as it leaves the whole image ‘in focus’. This saves much computation time, and is generally
easier to implement. Depth of field can be added to these pinhole renders in a post-process, which
usually requires depth information for each pixel, as well as a focus distance – the distance to
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the lens of objects that appear sharp – and some lens parameters. The time saved by applying a
post-process instead of integrating depth of field in a ray tracer is often significant, because a large
number of samples per pixel is required to render noise-free depth of field, and because of the large
cost of each ray tracing sample. In addition to saving computation time, using a post-process also
allows for artistic control over the depth of field after rendering has completed. This is particularly
useful for computer generated imagery for films, where re-rending can take minutes per frame.

There are several challenges that need to be overcome in order to render realistic depth of field
in a post-process, such as accurate separation between blurred and sharp depth layers and filling
in information that is missing in the original render but would become visible when applying
depth of field. An example of imperfect depth of field generated using a post-process is shown in
Figure 1.2. These problems have been addressed quite successfully in several different approaches.
A state-of-the-art implementation by Abadie (2018) is utilized in the Unreal game engine. This
implementation can generate very convincing depth of field in a post-process that takes only a few
milliseconds for full HD images (1920× 1080 pixels) on modern hardware. But in order to achieve
such performance, lens imperfections are modelled only very limitedly.

Figure 1.2: Imperfect depth of field, generated using the Unity game engine. Note that
some areas are both in focus and blurred at the same time (e.g., the spark in front of
the statue’s head). (image from https://docs.unity3d.com/2018.1/Documentation/Manual/

PostProcessing-DepthOfField.html)

An important aspect of depth of field is the aesthetic quality of the out-of-focus areas, which
is called bokeh. Bokeh can vary significantly between lenses, and, especially in cinematography,
lenses are often carefully sought out specifically for the unique bokeh that they produce. The
imperfections – the deviations from perfectly sharp, uniformly disk-shaped bokeh – of the bokeh
generated by these lenses aid in establishing the atmospheres that the story calls for. In visual
effects, often computer generated imagery (CGI) is intermixed with footage shot with lenses that
generate a particular bokeh. In order for these to blend seamlessly, it is very important to match
the bokeh of the CGI to that of the other footage. This is often done using post-processes like
ZDefocus, which is included in the popular compositing software Nuke (Robinson, 2013). When
using these kind of post-processes, the artist usually has much control over the size of the bokeh
shapes, and can control the shape and color by means of a single sprite input. This is no longer
sufficient when the lens imperfections are more pronounced, as the bokeh shape can depend on
the distance from the center of the image as well as its position relative to the focus point. Full
ray tracing methods like that introduced by Kolb et al. (1995) are able to accurately simulate all
bokeh imperfections, but only when fully specified lens designs are available, which is often not
the case.
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In order to find a solution that can be employed without the direct need of lens designs, we turn
to spectral Gaussian optics and aberration theory, which allow us to describe a lens design using
a small set of parameters that are a function of light wavelength. We can then calculate the
pixel position at which a light ray with a certain wavelength ends up after passing through the
lens without actually having to trace the ray through the whole lens system. This gives us a
simplified, physically-based method for simulating depth of field. The imperfections of a lens can
be expressed as aberrations. We simulate the five most simple aberrations, which are known as
the Seidel aberrations (Von Seidel , 1857). These aberrations are well known in optics, but have
never been explicitly applied and analyzed in depth of field simulation. Hullin et al. (2012) have
previously applied aberration theory to depth of field, but only implicitly by obtaining Taylor
expansions of analytically solved equations for ray parameters after passing through a lens system.
We propose the explicit use of aberration theory in the context of artist-driven depth of field
simulation and extensively analyze the applicability of Seidel aberrations in this context.

We use a distribution simulation method to generate depth of field by calculating the pixel coordi-
nates for many rays per pixel, applying these Seidel aberrations. We use full sequential ray tracing
of the lens, as introduced by Kolb et al. (1995), as our reference method. We compare the resulting
images both quantitatively using RMSE and MS-SSIM and qualitatively, in order to answer the
question: can aberration theory with only Seidel aberrations be used by an artist to accurately
simulate depth of field and how does it compare to other methods?

As other methods we use monochromatic (single wavelength) Gaussian optics without aberrations,
which serves as a basic ‘disk-shaped bokeh’ implementation, and a pencil map implementation
(Gotanda et al., 2015). We conclude that of the methods tested, our Seidel aberration-based
method produces the best results when compared to the ray traced reference images. This is not
universally true, however, as there are a few cases where a different implementation produced quan-
titatively more accurate results, depending mostly on the lens designs used. Our implementation
takes O(1) time to generate a ray, while ray tracing the lens system takes O(n) time, where n is
the number of lens surfaces. So our implementation can be a good alternative to ray tracing when
time is of the essence or when more artistic control is desired. It can be integrated into most ray
tracing frameworks as a way to generate primary rays. In order to use our method, we need to
keep track of a set of parameters that depend on the wavelength and distance to the object in a
non-intuitive way. We show that we can remove the distance dependence and reduce the number
of lens parameters without sacrificing much of the image quality in most cases.
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Chapter 2

Preliminaries

In this chapter we review fundamental concepts from the fields of photography and cinematography
in general and depth of field in particular that form the basis for our research.

2.1 Cameras, lenses and photographic terminology

A photo, video or film camera creates an image by focusing light onto a light sensitive surface,
which is either photographic film in analog cameras or a sensor in digital cameras. For brevity, we
will refer to this surface as the imaging sensor. To focus the light, early cameras used a pinhole,
which is just a tiny hole in an otherwise opaque surface in front of the sensor. A pinhole creates
images that are fairly sharp all over, making focusing irrelevant and depth of field non-existent.
An example of a pinhole camera photo can be seen in Figure 2.1.

Figure 2.1: A photo taken with a pinhole camera. Note that the sharpness is the same for both
the church in the background and the bricks in the foreground – there is no depth of field. Image
from https://theimageflow.com/ngg_tag/pinhole-photography/.
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A downside of pinhole photography is the low amount of light that enters the camera. It is often
necessary to wait for several minutes before the film or sensor has been exposed to enough light.
This is due to the small size that the pinhole needs to be to create a sharp image. If we let more
light in by making the pinhole larger, the image will become blurrier as light from more angles can
end up on the same spot on the sensor. But if the hole is made too small, diffraction effects make
the image blurrier as well. These effects are illustrated in Figure 2.2.

Figure 2.2: The effect of the pinhole size on the sharpness of a pinhole photograph. Larger holes
blur the image by letting light from too many angles in, while smaller holes blur the image by
diffraction effects (Hecht , 2017).

A lens can be used instead of a pinhole in order to let more light hit the sensor, without the blurring
that occurs when using large pinholes. Each lens has a focus distance, which is the distance at
which it focusses light coming from infinitely far away. Light that comes from a different point
will be focussed at a different distance. The plane that goes through the focus distance and is
perpendicular to the axis of the lens is called the focal plane. If we put the imaging sensor at this
plane, only light originating from infinitely far away will be ‘in focus’. Light from other distances
will appear blurred.

Photographic lenses contain multiple glass elements. These elements are combined in such a way
that they cancel out each other’s imperfections as much as possible, in order to create a uniformly
sharp image. We will refer to such a combination of glass elements as a lens system. An example
of a cross section of a lens system is shown in Figure 2.3.
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Figure 2.3: A schematic cross section of a lens system, showing the glass elements inside.

The lenses in a lens system can usually be described as spherical surfaces, the centers of which
lie on a common axis called the optical axis. There are exceptions: there exist lenses that are
not spherical (aspherical lenses) and sometimes lenses are not centered perfectly on the optical
axis (e.g., in tilt-shift lenses or lenses with optical stabilization). We will however focus only on
spherical, axis-aligned lens systems. Furthermore, a photographic lens usually has one or more
movable sections in order to change the focus distance. As a byproduct, this can cause focus
breathing, i.e. the field of view of a lens changing based on its focus distance. In all our simulations,
however, we will simulate moving the imaging sensor and keeping the lens still in order to focus
light from the desired distance.

Other than lenses, a lens system can also contain any number of stops, of which the aperture stop
is one. A stop is a usually circular hole that stops some light from travelling further down the lens.
The aperture stop is generally found in the middle of a lens system, and is the main light limiting
stop in the system. The size of the aperture directly impacts both the blur radius of out-of-focus
elements – also called the circle of confusion – and the amount of light that enters the lens. In
order to control the aperture size, an aperture is usually made up of several blades, with the exact
number and shape of blades varying per lens. Two examples are shown in Figure 2.4. The image
of the aperture stop is called the entrance pupil when seen from the direction of incoming light,
and the exit pupil when seen from the direction of outgoing light.

Figure 2.4: Two different apertures, with five straight blades (left) and eight rounded blades (right).
Image from https://improvephotography.com/29529/aperture-blades-many-best/

The exact shape of the aperture is visible in the out-of-focus areas of an image, as will be discussed
in the next section.
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2.2 Bokeh

An important concept when talking about depth of field is bokeh. The term is derived from the
Japanese word for blur or blur quality and denotes the aesthetic quality of the blur produced in
the out-of-focus parts of an image produced by a lens (Präkel , 2010). The exact shape and color
of bokeh can differ wildly from lens to lens, depending on the exact shape and materials of the
lens elements used. It can also vary based on the position in the image. Some examples of bokeh
are shown in Figure 2.5. The shape of the aperture stop generally determines the shape of the
bokeh, as it is the main light limiting stop in a lens system. So if, for example, the aperture has a
hexagonal shape, the bokeh will generally also resemble hexagons.

Figure 2.5: Several examples of bokeh, showing the wide variety of bokeh shapes and looks that
occur in modern lenses.

Bokeh can also vary based on whether it is in the foreground (in front of the focal plane) or
background (behind the focal plane), as is illustrated in Figure 2.6.

(a) Front bokeh (b) Back bokeh

Figure 2.6: Two photographs of bokeh generated by the same lens. The focus is behind (left) and
in front of (right) the light source. Images from https://photojottings.com/bokeh-sampler/
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Chapter 3

Previous work

We are now going to discuss the simulation of depth of field. As it has many application domains,
this is topic that has been researched in various fields, each of which has its own requirements. In
games, real-time performance is key, and realism has a lower priority. In CGI for films, realism is
often the most important and longer calculation times are justified.

Figure 3.1: Early depth of field simulation by Potmesil and Chakravarty (1981), showing two
renders of the same scene with different focus distances.

Depth of field simulations can be divided into two main categories: world-space and image-space
methods (Barsky and Kosloff , 2008). World-space methods simulate a lens system inside a 3D
world in one way or another, whereas image-space methods are applied as a post-process to a
previously rendered image. The two have different application domains, with image-space methods
mostly being used in real-time applications as they often require only a few milliseconds to run,
as compared to world-space methods that can take anywhere from a tenth of a second to several
minutes to run. But as this chapter will show, there is much diversity in both domains, with
realistic depth of field being possible both in world-space and image-space methods. From here
on out, image-space methods will be referred to as post-processes, defined as a method that has a
pinhole camera render as input, usually combined with depth information, as illustrated in Figure
3.2.

The first depth of field post-process was introduced by Potmesil and Chakravarty (1981), who
pioneered depth of field research in the context of CGI. They introduced a method for calculating
the diameter of the circle of confusion (the disk over which the light of a point light source is
spread on the screen), even taking into account effects like diffraction, and proposed a post-process
for a raster image (Figure 3.1).
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(a) (b)

Figure 3.2: The usual information provided to a depth of field post-process: a pinhole camera
render (left) and a depth map (right).

3.1 Uniform depth of field simulations

In this section we give an overview of depth of field simulation methods that produce uniform
depth of field and produce simple bokeh (at most aperture-shaped).

Accumulation buffer

Haeberli and Akeley (1990) introduced the accumulation buffer, where the scene is rendered sep-
arately from multiple viewpoints, the results of which are averaged to form the final image. An
advantage of this method is that it can be applied to any rendering algorithm, and is therefore
applicable to both rasterization and ray tracing. The accumulation buffer is rarely used nowadays,
mainly because of the large amount of time it takes to converge to a smooth image. If a low number
of samples is used, this method produces banding artifacts.

Gathering

A widely used depth of field post-process is gathering, which is a method to determining which
circle of confusion overlap which pixels. When using gathering, every pixel checks which of its
surrounding pixels – usually in some kernel – contribute to it. If the circle of confusion of a
surrounding pixel overlaps the sampling pixel, the color is added to a sum, which is later normalized
by dividing it by the number of contributing samples. Gathering is highly parallelizable, making
it ideal for GPU implementation, which is why it is often used in real time applications (Riguer
et al., 2004).

Separable blur

One method of accomplishing an out-of-focus effect is to apply a blurring filter, such as a Gaussian
filter. Image blurring can be done efficiently by using a separable filter. A separable filter can
be written as the product of two one-dimensional filters, which allows for a separate horizontal
and vertical convolution pass, reducing the algorithmic complexity from O(n2) time to O(n) time.
Because of this separable nature, not every blur shape can be accomplished using a separable filter.
But it turns out that it is possible to approximate convex (Moersch and Hamilton, 2014) and even
arbitrary (McGraw , 2015) bokeh shapes quite well using multiple passes. McGraw (2015) uses
low-rank linear filtering to approximate an arbitrary kernel as a sum of separable kernels. The
higher the number of kernels (the filter rank), the closer the resemblance to the original kernel. A
comparison of low-rank linear filtering to gathering is shown in Figure 3.3.
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(a) (b)

Figure 3.3: An image blurred with a hexagonal bokeh shape using sparse gathering (left) and
low-rank linear filtering (right) (McGraw , 2015).

With separable blur approaches it is not trivial to generate variable-sized bokeh. Conventionally,
a uniform kernel is applied over the entire image. Riguer et al. (2004) and Garcia (2017) achieve
variable sharpness by linearly interpolating between the blurred and sharp version of the input
image, as illustrated in Figure 3.4. Moersch and Hamilton (2014) introduce a method to generate
variable-sized bokeh using a modified separable approach where the first (horizontal) blur pass
exports not a 2D but a 3D image, supplying the second (vertical) pass with the extra information
needed. Their approach does however require a convex bokeh shape with a constant intensity.

Figure 3.4: An example of interpolation between the blurred and sharp version of an image using
a single-size separable filter. Note the clearly visible transition between the blurred and sharp
versions on the ground behind the tree. (Garcia, 2017)

3.2 Approximating imperfections

All the implementations discussed so far only render disk-shaped bokeh or at most emulate aperture
shapes. This is because these implementations depend on simplified lens simulations, at most
approaching Gaussian optics and the thick lens approximation – these will be discussed in detail
in Chapter 4. Here we will discuss Seidel aberrations and optical vignetting, which approximate
the imperfections introduced by real lenses.
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3.2.1 Seidel aberrations

Von Seidel (1857) first introduced a set of five aberrations, now known as the Seidel aberrations,
which build upon Gaussian optics to better approach the real-life behaviour of lenses. The Seidel
aberrations are spherical aberration, coma, astigmatism, field curvature and distortion. Each of
these describes a particular departure from a ‘perfect’ lens – as described by Gaussian optics – and
changes the bokeh in a particular way. The further from the optical axis light enters a lens, the
larger the aberrations will be. The Seidel aberrations are the five lowest-order aberration terms,
and will be introduced mathematically in Section 4.2.3. In Figure 3.5, a set of light sources is
rendered at two different distances – at the focus distance d and at 0.54d – with no aberrations,
and in Figure 3.6 the same set of light sources is rendered but with the five Seidel aberrations
applied. Note that spectral effects are not simulated in these figures.

Figure 3.5: A set of six light sources rendered without aberrations. The points have varying
distances from the optical axis, with the rightmost point being on the optical axis. The points are
rendered twice, with different distances from the lens: at the focus distance d (top) and at 0.54d
(bottom).

Figure 3.6: The same set of light sources, with the five Seidel aberrations applied.

Each of the Seidel aberrations is associated with a distinct change in appearance of the bokeh,
which is explained and illustrated below.
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Spherical aberration A spherical lens surface does not focus all incoming light into a point,
but along a section of the optical axis, which causes spherical aberration. This affects all rays, also
when originating from a point on the optical axis (Figure 3.7).

(a) Bokeh rendered at d and at 0.54d with spherical aberration

(b) Schematic, no aberrations (c) Schematic, spherical aberration only

Figure 3.7: Spherical aberration
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Coma Even if spherical aberration is eliminated, different parts of the lens still do not focus the
incoming light onto a single point. This causes point sources to appear to have a tail (coma) like
a comet. Coma only affects rays originating from a point away from the optical axis (Figure 3.8).

(a) Bokeh rendered at d and at 0.54d with coma

(b) Schematic, no aberrations (c) Schematic, coma only

Figure 3.8: Coma
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Astigmatism From the point of view of rays originating from a point away from the optical
axis, the lens appears to be tilted, which causes astigmatism. This makes the focal length of the
lens a function of the angle between the incoming light ray and the apparent long axis of the lens
(Figure 3.9).

(a) Bokeh rendered at d and at 0.54d with astigmatism

(b) Schematic, no aberrations (c) Schematic, astigmatism only

Figure 3.9: Astigmatism
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Field curvature The surface along which lie the focussed points of light sources – which them-
selves lie on a flat plane – is generally not a flat plane, but a curved surface. This is described by
field curvature (Figure 3.10).

(a) Bokeh rendered at d and at 0.54d with field curvature

(b) Schematic, no aberrations (c) Schematic, field curvature only

Figure 3.10: Field curvature
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Distortion The distance from the optical axis of the image point is generally not linearly pro-
portional to that of the source light point, which is described by distortion (Figure 3.11).

(a) Bokeh rendered at d and at 0.54d with distortion

(b) Schematic, no aberrations (c) Schematic, distortion only

Figure 3.11: Distortion

3.2.2 Optical vignetting

With aberrations, we can calculate how a lens changes the ray vector. But that is only one part
of the solution: the ray can also be blocked inside the lens and never reach the imaging sensor
(Gotanda et al., 2015). This effect is called optical vignetting. If light enters the lens off-axis, a
portion of it may be blocked internally from fully travelling through the lens. The further we are
from the optical axis, the larger this effect will be. The visual result on DOF is a darkening of
off-axis pixels as less light reaches them, and cut-off bokeh shapes. An example is shown in Figure
3.12.

Figure 3.12: An example of optical vignetting. The right-most light source is on the optical axis.

3.3 Approaching realistic bokeh

So far, we have only discussed depth of field simulation methods that produce uniform bokeh
with simple polygonal shapes. If we want to produce bokeh that more accurately approaches that
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produced by real life lenses, we need more accurate simulations.

3.3.1 Sprites

Sprite-based approaches are post-processes that use a technique called scattering, in which a sprite
of a bokeh shape is rendered to each pixel, scaled with the circle of confusion size of that pixel
and with an alpha value inversely proportial to its area (Demers, 2004). Currently, sprite-based
methods yield the largest amount of creative control and flexibility, as any input image can be used
as bokeh sprite. An example of a sprite-based approach is Nuke’s ZDefocus1 (Robinson, 2013),
which is widely used in the visual effects industry. It is possible to procedurally generate various
bokeh shapes within a sprite-based approach, such as polygonal aperture shapes. Procedural
generation allows for much control over the exact shape, as well as animated aperture changes
(Gotanda et al., 2015; Abadie, 2018).

If implemented accurately, a sprite-based approach is accurate for one point in space at most: the
point at which the bokeh shape which is used as the sprite was captured.

3.3.2 Pencil maps

Gotanda et al. (2015) introduced pencil maps, which are pre-computed textures showing light paths
as they emerge from some lens system, with the distance between the lens and the light source on
one axis, and the on-screen distance from the center of the bokeh shape on the other, as in Figure
3.13. Making use of the rotational symmetry, we can take a vertical slice of the pencil map and
map the pixels to a disk to obtain a bokeh sprite at various distances from the lens. This process
is theoretically able to capture all axial aberrations.

Figure 3.13: A pencil map (top) and bokeh sprites generated from vertical slices taken from it
(bottom) (Gotanda et al., 2015).

When implemented accurately, the resulting bokeh is correct for light sources along the optical
axis (center of the image), and gets more and more incorrect the further away from it we get.

1Internally, ZDefocus does not render sprites but works by separating the scene into a number of depth layers,
each of which are convoluted with a scaled version of the bokeh shape image. This helps with accurate depth sorting.
The output image will be identical, provided that there are enough depth layers.
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Figure 3.14: A normal pencil map (left) and its normalized version (right) (Gotanda et al., 2015).

Pencil maps can be optimized by normalizing the height of each pixel to the circle of confusion size,
which makes it possible for the pencil map to be used with any circle of confusion radius as this is
no longer encoded in the pencil map itself. It also increases the precision around the focus point
(where the circle of confusion is small), as more information is saved in otherwise black pixels. An
example of a pencil map and its normalized version are illustrated in Figure 3.14.

3.3.3 Ray tracing

In 1984, Cook et al. (1984) introduced distribution ray tracing, which uses multiple rays to numer-
ically integrate the integrals involved in motion blur, soft shadows and depth of field. In order to
generate depth of field, the pinhole camera position is replaced by a 2D camera aperture which
is sampled randomly. Effects like partial bokeh occlusion and circular bokeh shapes are achieved.
Distribution ray tracing is still a widely used method, as it requires little extra resources to im-
plement in an existing ray tracer and generates good results. Cook et al. (1984) used a thin lens
model and Gaussian optics to generate camera rays, producing purely disk-shaped bokeh. Kolb
et al. (1995) first described a monochromatic physically-based camera model and lens system im-
plemented in a distribution ray tracer, that included multiple lens elements, as well as stops and
apertures. This implementation produces realistic lens aberrations. Ray tracing a lens system is
also possible as a post-process when using screen-space ray tracing. This can be done effectively
for generating depth of field, as demonstrated by Lee et al. (2010).

Recently, 3D animation films such as Pixar’s Inside Out have started using models of real life
lens systems to increase realism2. A lens system can be fully ray traced quite easily, but doing so
efficiently requires a good sampling strategy. Wu et al. (2013) observe that the straightforward
way of generating a ray by connecting a random point on the image plane to a random point on
the lens closest to the image plane is hardly efficient, as the majority of these rays are blocked by
the rims of the successive lens elements. Instead, they calculate the entrance and exit pupils of
the lens and place random points on those pupils. Additionally, an efficient method of rendering
spectral effects is introduced. Their approach is capable of efficiently generating realistic spectral
aberrations, as illustrated in Figure 3.15.

2https://www.studiodaily.com/2015/07/pixars-inside-modeled-real-world-filmmaking-tools/
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Figure 3.15: Simulated bokeh by Wu et al. (2013), showing realistic spectral aberrations.

Hullin et al. (2012) derive polynomial-based approximations for the origin and direction vectors of
rays going through a complex lens system, in order to efficiently generate spectral aberrated bokeh,
as well as lens flares. This is done by analytically solving the intersection of a ray with all surfaces
and obtaining the Taylor series of the resulting equations. Terms of high orders can be truncated
as desired to reduce the complexity of the equations. Because of this, their approximations take
into account both lower (Seidel) and higher order aberrations. An advantage of using polynomials
is that they are cheap to evaluate on most hardware.

These polynomial approximations were further explored by Schrade et al. (2016) (Figure 3.16),
who fitted polynomial approximations to brute-force samples taken by ray tracing a lens system.
Their implementation also supports anamorphic lenses. These approximations are then stored in
a light field data structure, which can be quickly transformed for refocusing. They note a problem
that is intrinsic to realistic lens modelling: it can be hard to obtain an exact description of the
elements and materials used in a lens system, and even harder to obtain information about the
specific lens coatings that were used.

Figure 3.16: Fisheye (large field of view) lens simulations from Schrade et al. (2016).

In addition to an efficient ray intersection method for aspheric lenses, Joo et al. (2016) introduce a
texture-based approach to model manufacturing imperfections as well as tiny dirt marks found in
real life lenses. The imperfections introduced by grinding and polishing, which produce so-called
‘onion ring bokeh’, are approximated by applying a normal map to certain lens elements, yielding
realistic bokeh shape textures (Figure 3.17).
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Figure 3.17: Bokeh shapes generated by modelling manufacturing imperfections using normal maps
and dirt marks using textures in a ray traced lens system (Joo et al., 2016)

Our method will approximate spectral aberrated bokeh taking into account Seidel aberrations,
which will make our implementation similar to that of Hullin et al. (2012). We will propose a more
artist-focused approach and analyze the applicability of Seidel aberration in the context of depth
of field generation specifically.
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Chapter 4

Optics and aberration theory

In order to model a lens system, we need to represent it as a number of variables, which we can
calculate using Gaussian optics and aberration theory. In this chapter we will go over the math we
need for this, with the end goal of calculating the coordinates at which a light ray hits a camera’s
imaging sensor after traversing the lens system.

4.1 The thick lens approximation

The most basic form of optics uses the thin lens approximation. In this approximation, a lens
is represented by a single, flat surface at which all light refraction occurs. A more accurate
approximation is the thick lens approximation, which also takes into account the thickness of
the lens. Here, the lens is represented by two flat surfaces at which the refraction occurs, with a
certain distance (thickness) between them. These surfaces are known as the principal planes. We
define the principal plane at which the light enters the lens as the front principal plane, and the
one where light exits the lens as the rear principal plane.

In our implementation, we can simplify the lens system by approximating it as one thick lens. In
order to calculate the lens magnification later on, we need to calculate the positions of the principal
planes1, as well as the effective focal length of the lens system. One method to do this is the matrix
method (Hecht , 2017). This method is particularly useful to us because of its linear nature, which
makes it easy to work with when dealing with different lens systems with a variable number of
glass elements. We will not go into the specifics here, but merely outline the equations used in our
implementation. The full derivation can be found in Hecht (2017).

There are two matrices, the refraction matrix Ri and the transfer matrix Ti, which are defined as

Ri =

(
1 −Di

0 1

)
=

(
1 −(ni+1 − ni)/ri
0 1

)
, (4.1)

where Di is the power of the ith refractive surface, ni and ni+1 are the refractive indices before and
after the ith refractive surface, respectively, and ri is the radius of curvature of the ith refractive

1In our implementation we only really need the front principal plane. But the rear principal plane was used to
calculate the field of view of the camera, which we used to automatically stretch the input image such that it filled
the field of view for any lens system.
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surface; and

Ti =

(
1 0

di,i+1/ni+1 1

)
, (4.2)

where di,i+1 is the distance between the ith and i + 1th surfaces. With these matrices, we can
calculate the system matrix A as

A =

(
a11 a12

a21 a22

)
= TkRkTk−1Rk−1...T2R2T1R1, (4.3)

where k is the number of refractive surfaces in the lens system. Now, using element a12 of the
system matrix we can find the effective focal length as

f = − 1

a12
, (4.4)

the position of the front principal plane as

zfpp = zfirst surface +
1− a11

−a12
, (4.5)

and the position of the rear principal plane as

zrpp = zlast surface +
a22 − 1

−a12
. (4.6)

We have now reduced the lens system to two planes and a focal length, which will be very useful
later on.

4.1.1 Entrance and exit pupils

As introduced previously, the aperture stop is the main light limiting stop in a lens system. When
seen through either side of the lens system, we instead see the image of the aperture stop, which
is called the entrance pupil when seen from the direction of the incoming light, and the exit pupil
when seen from the outgoing light direction. The entrance and exit pupils are useful for sampling
and are also used in equations to be introduced later in this chapter.

The positions of the entrance and exit pupil planes are calculated by using a chief ray. This is any
ray that intersects the center of the aperture stop and makes a nonzero angle with the optical axis.
For the entrance pupil plane, a chief ray is traced from the center of the aperture stop backwards
through the lens system, and then intersected with the z axis to find

zpupil = Ōcz −
Ōcx,y

D̄cx,y

D̄cz, (4.7)

where Ōc and D̄c are the origin and direction vectors, respectively, of the corresponding chief ray
after tracing it through the lens system. The subscripts z and x,y indicate the z-component and the
distance from the z-axis, respectively. The path can also be reversed in order to find the position
of the exit pupil plane; then the chief ray is traced forwards through the lens system.
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The radii of the pupils can be calculated with a marginal ray – a ray that touches the edge of the
aperture stop and therefore also the edges of the entrance and exit pupils – as

rpupil =

[
Ōm +

zpupil − Ōmz

D̄mz

D̄m

]
x,y

, (4.8)

where Ōm and D̄m are the origin and direction vectors, respectively, of the marginal ray at the
same side of the lens system as the pupil.

4.2 Gaussian optics and aberrations

The equations we used so far are all paraxial approximations, meaning that they are only valid in
the paraxial region – the region very close to the optical axis. Optics, when using the paraxial
approximation, is also known as Gaussian optics. The further away from the optical axis we
move, the larger the error in calculated values gets, when using the paraxial approximation. In
order to improve our calculations, we can add aberrations to values calculated using paraxial
approximations. Our goal is to calculate the imaging sensor plane coordinates at which an incident
light ray ends up after moving through a lens system. To achieve this, we will first calculate these
coordinates purely using Gaussian optics, and then add some aberrations, specifically the Seidel
aberrations.

We assume that lens systems are symmetrical along the optical axis, which we will define as the
z-axis. Vectors are either 2D vectors along a plane perpendicular to the z-axis or 3D vectors. 2D
vectors are notated as V, while 3D vectors, adding a z-coordinate, are notated as V̄ (note that
the x and y components of V̄ are equal to those of V). Most equations and definitions in this
section come from Born et al. (1999). More extensive explanations and derivations for everything
discussed here can be found in Born et al. (1999).

4.2.1 Gaussian image plane coordinates

In Figure 4.1, a schematic representation of a lens system is shown. Our first goal is to use Gaussian
optics to calculate P∗1, the Gaussian image plane coordinates.

Figure 4.1: A schematic representation of a lens system (Born et al., 1999)
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We start out with the light source (object) plane coordinates P0, which we can calculate such that
the input image exactly fills the screen, as

P0 = sensor width× D

zsensor − zrpp
Pp, (4.9)

where Pp are the pixel coordinates, normalized such that −0.5 ≤ Ppx ≤ 0.5. We then randomly
sample the exit pupil to find the exit pupil plane coordinates P′1, taking into account the exit
pupil radius and, if desired, the aperture shape. We then simply find the entrance pupil plane
coordinates P′0 as

P′0 =
1

M ′
P′1, (4.10)

where M ′ is the lateral magnification between the entrance and exit pupils, or

M ′ =
exit pupil radius

entrance pupil radius
. (4.11)

Then, we can find the Gaussian image plane coordinates simply as

P∗1 = MP0, (4.12)

where M , the lateral magnification between the object and image planes, is calculated as2

M = − f

x0
= − f

zlight source + zfpp − f
. (4.13)

We can obtain zlight source from the pixel depth value D – which we assume to be the distance
between the pinhole camera and the light source – by

zlight source =
√
D2 − |P0|2. (4.14)

Finally we need to add the aberration vector ∆P1, which we will calculate later on, to obtain

P1 = P∗1 + ∆P1. (4.15)

4.2.2 Imaging sensor plane coordinates

We have now found the Gaussian image plane coordinates, but these are only equal to the imaging
sensor plane coordinates if the light source is at precisely the focus distance. In the general case,
we need to find the ray between P̄1 and some other point Q̄ to obtain the imaging sensor plane
coordinates, as illustrated in Figure 4.2.

2From lecture slide 9 at https://ocw.mit.edu/courses/mechanical-engineering/2-71-optics-spring-2009/

video-lectures/lecture-5-thick-lenses-the-composite-lens-the-eye/MIT2_71S09_lec05.pdf.
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Figure 4.2: In order to find the imaging sensor coordinates Ps, we need to construct a ray from
some point Q̄ and the Gaussian image plane coordinates P̄1.

We can find a point Q̄ by looking at the wavefront of the outgoing light, that intersects the
Gaussian image plane at P1. Q̄ is the intersection point of the ray from P̄′1 to P̄1 with the
wavefront. The ray intersects both the wavefront and its Gaussian approximation, which allows
us to use the simpler Gaussian wavefront. In Gaussian optics, the wavefront is a perfect sphere
centered at P̄∗1 that also intersects the center of the exit pupil. We can therefore calculate Q̄ as

Q̄ = P̄∗1 +
P̄′1 − P̄∗1
|P̄′1 − P̄∗1|

Rw, (4.16)

where Rw is the radius of the spherical wavefront, which can be calculated as

Rw = |P̄∗1 − zexit pupilẑ|, (4.17)

where ẑ is the unit vector along the positive z-direction. In order to find the sensor plane coordi-
nates Ps, we set up a ray starting at P̄1 and ending at Q̄, with direction vector

D̄ = P̄1 − Q̄. (4.18)

We can then find the sensor plane coordinates as

P̄s = P̄1 + dimage→sensor
D̄

D̄ • ẑ
, (4.19)

where dimage→sensor is the distance between the Gaussian image plane and the imaging sensor plane.
In order to calculate this distance, we first calculate the z-coordinate of the Gaussian image plane
as

P̄1z = zexit pupil −D1, (4.20)

where D1 is the negative distance between the exit pupil plane and the Gaussian image plane, as
illustrated in Figure 4.1. We can calculate D1 as

D1 = MM ′D0 = MM ′(P̄0z + zentrance pupil), (4.21)
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where D0 is the distance between the object plane and the plane of the entrance pupil. Combining
Equations 4.20 and 4.21, we get

P̄1z = zexit pupil −MM ′(P̄0z + zentrance pupil). (4.22)

To calculate P̄sz, the z coordinate of the sensor plane, we can use the same formula, but using the
focus distance instead of zobject, and using constant values for the exit pupil and entrance pupil
plane positions, indicated with 550 as these values are calculated using 550 nm light3:

P̄sz = zexit pupil, 550 −M550M
′
550(focus distance + zentrance pupil, 550). (4.23)

Here, M550 and M ′550 are calculated again using Equations 4.13 and 4.11, again using constant
values obtained using 550 nm light.

We can now calculate the distance between the two as

dimage→sensor = P̄sz − P̄1z. (4.24)

4.2.3 The aberration vector

When calculating the aberrations, it is useful to first define two normalized coordinate systems
on the object and image planes, such that within Gaussian optics the object and image plane
coordinates p0 and p1 are equal:

p0 = p1. (4.25)

For this we will define two units of length l0 and l1 in the object and image planes, respectively,
such that

l1
l0

= M. (4.26)

Similarly, we define two units of length λ0 and λ1 in the entrance and exit planes, respectively,
such that

λ1

λ0
= M ′. (4.27)

We can then define p0 and p1 by normalizing the object and image plane coordinates as

p0 = C
P0

l0

p1 = C
P1

l1
,

(4.28)

3This is approximately the wavelength which has the highest perceived luminance, which is why we chose it for
these calculations.
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Where C is a constant defined by

C =
n0l0λ0

D0
=
n1l1λ1

D1
, (4.29)

which is chosen in order to simplify calculations later on. n1 is the refractive index of the image
space. We can safely assume that n0 = 1, and we will define λ0 ≡ 1 and l0 ≡ 1. Equation 4.29
then reduces to

C =
1

D0
. (4.30)

We can then rewrite Equation 4.15 as

P1 = P∗1 +D1∆p, (4.31)

where

∆p = p1 − p0 =
n1λ1

D1
(P1 −P∗1) =

1

D1
(P1 −P∗1). (4.32)

We can do a power series expansion in order to calculate this new aberration vector ∆p. The
terms of this expansion up to the third order are also known as the Seidel aberrations, and are

∆p =

[
Bρ3 sin θ − 2Fy0ρ

2 sin θ cos θ +Dy2
0ρ sin θ

Bρ3 cos θ − Fy0ρ
2(1 + 2 cos2 θ) + (2C +D)y2

0ρ cos θ − Ey3
0

]
, (4.33)

where y0 = p0y, ρ and θ are the polar coordinates of the sampled point on the exit pupil plane
and B, C, D, E and F are the five Seidel coefficients, each of which controls the contribution of
one Seidel aberration: B controls spherical aberration, C controls astigmatism, D controls field
curvature, E controls distortion and F controls coma. Equation 4.33 assumes that p0x = 0. So
for the general case, we need to do some rotations in order to accurately calculate ∆p.

4.2.4 Calculating the Seidel coefficients

The five Seidel coefficients can be calculated using the following equations from Born et al. (1999):

B =
1

2

∑
i

h4
i

bi
r3
i

(ni − ni−1) + h4
iK

2
i

(
1

nis′i
− 1

ni−1si

)
,

C =
1

2

∑
i

h4
i k

2
i

bi
r3
i

(ni − ni−1) + (1 + h2
i kiKi)

2

(
1

nis′i
− 1

ni−1si

)
,

D =
1

2

∑
i

h4
i k

2
i

bi
r3
i

(ni − ni−1) + h2
i kiKi(2 + h2

i kiKi)

(
1

nis′i
− 1

ni−1si

)
−Ki

(
1

n2
i

− 1

n2
i−1

)
,

E =
1

2

∑
i

h4
i k

3
i

bi
r3
i

(ni − ni−1) + ki(1 + h2
i kiKi)(2 + h2

i kiKi)

(
1

nis′i
− 1

ni−1si

)
− 1 + h2

i kiKi

h2
i

(
1

n2
i

− 1

n2
i−1

)
,

F =
1

2

∑
i

h4
i ki

bi
r3
i

(ni − ni−1) + h2
iKi(1 + h2

i kiKi)

(
1

nis′i
− 1

ni−1si

)
,

(4.34)
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which are sums over the i refractive surfaces in a lens system. For simplicity we will only use lenses
that consist of purely spherical surfaces. That eliminates the first terms in the equation, as bi = 0
for spherical surfaces. Equation 4.34 then reduces to

B =
1

2

∑
i

h4
iK

2
i

(
1

nis′i
− 1

ni−1si

)
,

C =
1

2

∑
i

(1 + h2
i kiKi)

2

(
1

nis′i
− 1

ni−1si

)
,

D =
1

2

∑
i

h2
i kiKi(2 + h2

i kiKi)

(
1

nis′i
− 1

ni−1si

)
−Ki

(
1

n2
i

− 1

n2
i−1

)
,

E =
1

2

∑
i

ki(1 + h2
i kiKi)(2 + h2

i kiKi)

(
1

nis′i
− 1

ni−1si

)
− 1 + h2

i kiKi

h2
i

(
1

n2
i

− 1

n2
i−1

)
,

F =
1

2

∑
i

h2
iKi(1 + h2

i kiKi)

(
1

nis′i
− 1

ni−1si

)
.

(4.35)

There are still some variables here that we need to define. First are the refractive indices and
distances, which are illustrated in Figure 4.3:

• ni is the refractive index of the medium that follows the ith lens surface,

• ni−1 is the refractive index of the medium that precedes the ith lens surface,

• −si is the distance between the object plane and the ith lens surface along the optical axis,

• s′i is the distance between the ith lens surface and its Gaussian image plane along the optical
axis,

• −ti is the distance between the plane of the entrance pupil and the ith lens surface along the
optical axis, and

• t′i is the distance between the ith lens surface and the plane of the exit pupil along the optical
axis.

Figure 4.3: An illustration of a single surface in a lens system.

Since the Gaussian image formed by the first i surfaces of the system is the object for the (i+ 1)th
surface, and also the exit pupil of the ith surface is the entrance pupil of the (i+ 1)th surface, we
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can define

si+1 = s′i − di,
ti+1 = t′i − di,

(4.36)

where di is the distance between the poles of the ith and the (i+ 1)th surface.

Ki can be calculated from the Abbe relations (Born et al., 1999) by

Ki = ni−1

(
1

ri
− 1

si

)
= ni

(
1

ri
− 1

s′i

)
, (4.37)

where ri is the radius of curvature of the ith surface. ri is positive when the surface is convex
towards light incident from the negative z-direction4. If we rewrite Equation 4.37 we can find the
following equation for s′i:

s′i =
risini

rini−1 + si(ni − ni−1)
. (4.38)

Similarly, we can rewrite the other Abbe relation

Li = ni−1

(
1

ri
− 1

ti

)
= ni

(
1

ri
− 1

t′i

)
, (4.39)

to find

t′i =
ritini

rini−1 + ti(ni − ni−1)
. (4.40)

Finally we need to calculate the “abbreviations” hi and ki, which are introduced to simplify the
equations. hi is calculated by

h1 =
s1

t1 − s1
,

hi+1 =
si+1

s′i
hi,

(4.41)

as long as λ0 = 1, which we have defined before. Finally, ki is calculated as

k1 =
t1(t1 − s1)

n0s1
,

ki+1 = k1 +

i∑
j=1

dj
njhjhj+1

.

(4.42)

Now that we know how to calculate everything needed to find the imaging sensor plane coordinates
P1. In the end, we need to keep track of the following parameters in our implementation:

• The five Seidel coefficients B, C, D, E and F ,

• The focal length f ,

4As an example, the lens surface illustrated in Figure 4.3 has a positive curvature.
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• The entrance and exit pupil positions zentrance pupil and zexit pupil,

• The entrance and exit pupil radii,

• The front and rear principal plane positions zfpp and zrpp.

All these parameters depend on the wavelength of the light5, and the Seidel coefficients also depend
on the distance between the light source and the entrance pupil (to find s1 and t1). In the next
chapter we will discuss our implementation, and how we keep track of these changing parameters.

5Note that the rear principal plane position is only used to scale the input image. As such, a constant value is
desired, and the wavelength dependence can be ignored.
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Chapter 5

Implementation

Figure 5.1: A schematic overview of the implementation

In order to test the accuracy of the Seidel aberrations, we have implemented a pipeline that takes as
input an incoming light ray, the wavelength of the ray and a description of a lens system, simulates
how the lens system transforms the ray, and outputs the point at which the transformed ray hits
a certain imaging sensor. A schematic overview of the pipeline is shown in Figure 5.1. We chose
to trace rays from object to image space and not the other way around – even though this is not
the way it is usually done in ray tracers – because the existing literature on Seidel aberrations uses
this assumption as well. The implementation should yield similar results if we reverse the order of
the lens surfaces or trace the rays in the other direction.

5.1 Ray transformation and DOF methods

We use five different methods in order to simulate the ray transformation and spectral effects,
which we will refer to by the shortened names in brackets:

1. Screen Space Ray Tracing (SSRT )

2. Gaussian optics (Gaussian)

3. Gaussian optics + Seidel aberrations + primitive optical vignetting (Seidel)

35



4. Gaussian optics + Distortion + primitive optical vignetting (Distortion + vignetting)

5. Gaussian optics + pencil map (Pencil map)

Screen Space Ray Tracing (SSRT): The incoming light ray is traced through the lens system
using spectral ray tracing, using the algorithm described by Kolb et al. (1995). Only refractions
are simulated, and it is assumed that 100% of the rays pass through each lens, as simulating the
effects of anti-reflective lens coatings that exist on real life lenses is beyond the scope of this thesis.

In order to assess the validity of the straightforward ray tracing algorithm as a reference imple-
mentation, we compared the simulation of a certain lens description with photographs taken using
the actual lens the description was based on. The results are shown in Figure 5.2. Visible effects
that are missing from the SSRT simulation include artifacts introduced by manufacturing defects
and/or dirt and grime on the lenses, diffraction patterns at the edges of the bokeh. Additionally,
in the left four images, the bokeh shape seems to be slightly warped, which may be caused by
small differences between the real lens and the separately obtained lens description. In general,
though, SSRT seems to resemble the photographed bokeh well, which makes it a good choice for
a reference implementation.

Figure 5.2: A selection of photos of bokeh captured using a physical camera and their simulated
analogs, generated using SSRT.

Gaussian optics (Gaussian): The incoming light ray is transformed using the math introduced
in Sections 4.1, 4.2.1 and 4.2.2, using purely the Gaussian (paraxial) approximations and not
including any aberrations. This method does not use any spectral rendering, and represents all
methods that produce perfectly uniform disk-shaped bokeh.

Gaussian optics + Seidel aberrations + primitive optical vignetting (Seidel): The
incoming light ray is again transformed using Gaussian optics, but Seidel aberrations are applied
as well, as described in Section 4.2.3. This method is fully spectral, and adds a primitive form of
optical vignetting, by checking if the ray passes through the aperture of the first lens surface.

Gaussian optics + distortion + primitive optical vignetting (Distortion + vignetting):
Similar to the Seidel method, this method adds upon the Gaussian optics method, but does not
fully implement Seidel aberrations. Only the distortion aberration is added, as well as primitive
optical vignetting. This method does not use any spectral rendering.
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Gaussian optics + pencil map (Pencil map): This final method also builds upon the Gaus-
sian optics simulation, but adds crude spectral effects to it when rendering to the screen by mul-
tiplying the sampled pixel color associated with the ray with a color looked up in a pencil map,
as described by Gotanda et al. (2015). This method was chosen because it aims to add realism to
pure Gaussian optics, but in a simplified way.

For the SSRT, Gaussian, Seidel and Distortion + vignetting methods, each input ray is assigned a
random wavelength, the associated CIEXYZ color of which is then looked up in a table (described
in more detail in Section 6.1). This color is then multiplied component-wise by the sampled RGB
pixel color, the result of which is plotted to the screen at the calculated pixel coordinates. This is
applied with the Gaussian and Distortion + vignetting methods as well even though they do not
use any spectral effects, because this makes sure that the output color will converge to the same
result when the input color is the same. This is done in a similar way when using the Pencil map
method, as it is already taken care of by filling the pencil map in the first place.

The incoming ray is generated by starting at a certain object point and then randomly sampling
the entrance pupil. This significantly reduces the number of rays that do not fully travel the lens
and therefore decreases the number of samples necessary for convergence.

As our implementation is built on tracing a single ray at a time, occlusion effects other than optical
vignetting are not simulated.

5.2 Lens system

During the initialization stage, a model of a lens system is loaded from a ZEMAX file, which is a
widely used file format used in the optical design application Zemax OpticStudio1. We use this to
obtain the centers, radii and apertures of the spherical lens surfaces, as well as the identifiers of
the used glass types. These identifiers are used to look up coefficients to be used to calculate the
refractive index n of the glasses at a certain wavelength λ, using one of two formulas, depending
on the available coefficients (Ai, Bi, Ci):

n =

√
1 +

B1λ2

λ2 − C1
+

B2λ2

λ2 − C2
+

B3λ2

λ2 − C3
,

n =
√
A0 +A1λ2 +A2λ−2 +A3λ−4 +A4λ−6 +A5λ−8.

(5.1)

The first of these equations is known as the Sellmeier equation, the second one is the disper-
sion formula used in the HOYA glass catalog2. The coefficients are obtained from https://

refractiveindex.info/3 (Polyanskiy , 2018).

Using equations from Section 4.1, the entrance pupil radii and positions, as well as the front and
rear principal plane positions and the focal length are calculated for a set of 64 different wavelengths
and stored in a lookup table. The same is done for the Seidel coefficients, which are calculated
for 64 different distances to the lens for each of the 64 wavelengths using the Equations in Section
4.2.4.

1https://www.zemax.com/
2http://www.hoya-opticalworld.com/english/technical/002.html
3The whole dataset of coefficients and other glass data can be found at https://github.com/polyanskiy/

refractiveindex.info-database.
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5.2.1 Influence of lens parameters

The lens parameters (focal length, pupil radii and positions and principal plane positions) have
various uses in the simulation, and impact the end result in different ways. The lateral magnification
M (Equation 4.13) depends on the focal length and front principal plane position. Similarly, the
lateral magnification between the entrance and exit pupil planes M ′ (Equation 4.11) depends on
the entrance and exit pupil radii. M directly impacts the circle of confusion radius. The entrance
pupil position is used to find D0 (as illustrated in Figure 4.1) and the exit pupil position is used to
find P̄1z and P̄sz, which, together with M and M ′, are used to calculate dimage→sensor (Equation
4.24). This further impacts the circle of confusion size and general bokeh shape, as it is used to
obtain the sensor plane coordinates (Equation 4.19). The rear principal plane value is only used
to calculate the size of the input image such that it fills the field of view of the lens. For this an
average value for the lens is used, and therefore the wavelength dependence of this parameter can
be ignored.

Because the influence of the lens parameters is mainly concentrated in dimage→sensor and M , we
will generate renders where only those variables are wavelength-dependent. As M depends on f
and zfpp, and dimage→sensor scales linearly with M , we will distill the lens parameters to only three:
f , zfpp and 1

−M dimage→sensor. We use −M instead of M as this will later give some additional
insight in the values of this last parameter.

5.3 Sensor position

Each method requires a fixed sensor plane position. We chose not to use the same sensor plane
position for all methods, as the perceived focus distance (the distance at which the circle of con-
fusion is actually smallest) can differ between methods, depending on the specific aberrations of
the different lenses. So for a specified focus distance, we must calculate the image sensor plane
position.

To find this location for the SSRT method, we trace rays originating at the focus distance on the
optical axis through the lens and find the weighted average over the whole color spectrum and
entrance pupil (weight = luminance) of the distance at which they come into focus. This position
will be used as the sensor distance.

For the Seidel method we obtain a similar weighted average, but trace only paraxial rays, as we
should use Gaussian optics only.

The other methods can directly use the specified focus distance, as there are no aberrations present
that can change the perceived focus distance.

5.4 Filling the pencil map

We generate a 256×256 pixel pencil map, where the x-coordinate is the distance between the light
source and first lens surface and the y-coordinate is the distance from the optical axis where the
light ray intersects the imaging sensor. For each distance, we use stratification to uniformly sample
at 512 wavelengths and 512 entrance pupil coordinates4. These samples are plotted to the pencil
map such that precisely 99% of the luminance is stored in the bottom 128 pixels. This way, we
can account for both the ‘sharp’ bokeh shape in the bottom 128 pixels and for any leakage, which
has room in the top 128 pixels. Two examples of pencil maps are illustrated in Figure 5.3.

4We only need to do 2D calculations as the system is rotationally symmetric, so we only need to spread these
samples over one axis of the entrance pupil.
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(a) Nikkor 50mm f/1.8 (b) Single lens

Figure 5.3: Two examples of pencil maps as generated by the program, using two different lenses
(processed for visibility)

When sampling the pencil map, we linearly interpolate between the four closest values based on
the light source’s distance to the lens and the position on the entrance pupil.

5.5 Importance sampling

To ensure fairly uniform noise in the final image, we calculate the number of samples to be taken
separately for each pixel. Each pixel i gets assigned a weight equal to

Wi = CoCi × li, (5.2)

where li is the pixel’s luminance as calculated using Equation 6.1, and CoCi is the pixel’s circle
of confusion, which is estimated by taking a single sample. It may be necessary to clamp CoCi in
order to reduce the impact of pixels with a very large circle of confusion, and to keep Wi > 0 even
when CoCi = 0.

In our implementation, each frame adds a specified number of samples N over the entire image,
and all frames are added together to the final output image, which is then normalized by diving
it by the number of frames. For each frame, the number of samples Si to be taken for pixel i is
determined as

Si = floor(αiWi) +

{
1, if rnd() < αiWi − floor(αiWi)

0, otherwise
, (5.3)

where rnd() is a function that returns a random value between 0 and 1. This way, the overall
sample distribution converges to the calculated distribution over time. αi is a scaling factor that
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we set to

αi = NWi

/∑
k

Wk, (5.4)

so that the total number of samples over the whole image is equal to N . Because the number of
samples differs per pixel, we need to normalize the output color. We do this by multiplying it by

1

Si
×

{
(αiWi)

−1, if αiWi < 1

1, otherwise
. (5.5)

An alternative way to normalize the output would be to keep track of the cumulative number of
samples per pixel and only normalize the output when the final image is saved, as

1

/
F

F∑
f=0

Si,f , (5.6)

where F is the total number of frames.
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Chapter 6

Experiment setup

Our goal is to assess the applicability of the Seidel algorithm in artistic DOF simulation. We will
do this in three parts:

1. Compare the rendered images qualitatively by visual inspection,

2. Compare the rendered images generated by Seidel, SSRT and the other reference imple-
mentations quantitatively using RMSE (root mean square error) and MS-SSIM (multi-scale
structural similarity index measure),

3. Examine the variation in the pre-calculated values (Seidel coefficients and lens parameters)
and assess the applicability of the implementation as an artistic process.

We will render three test scenes with seven different lens systems, using all five DOF methods
(SSRT, Seidel, Distortion + vignetting, Gaussian and Pencil map). Each render contains a total
of 1010 samples for an image of 1280 × 720 pixels, which averages out to around 10, 850 samples
per pixel. This ensures that the noise is low enough as not to impact the RMSE and MS-SSIM
calculations that we will do in any significant way1.

We chose to use a sensor width of 35mm, which is the most common width of both film and image
sensors. With an exception for the Petzval lenses: as these produce a very small image, as can be
seen in Figure 6.1, we chose to use a sensor width of 15mm for these lenses.

1Because pencil maps are not importance sampled and as 99% of the luminance is stored in the bottom half of
the pencil map, around 50% of the pencil map samples sample a black value and therefore do not contribute to the
final result, bringing the effective sample count closer to 5, 000 per pixel, increasing the noise as compared to the
other methods. Additionally, with the SSRT, Seidel and Distortion + vignetting DOF methods, some samples are
lost due to optical vignetting. The percentage of lost samples varies a lot between lenses and increases from around
0% at the center to higher values near the edge of the frame.
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(a) 35mm sensor width (b) 15mm sensor width

Figure 6.1: Comparing the image generated when using the Petzval lens with two different sensor
widths (35mm and 15mm)

We choose to compare images using both RMSE and MS-SSIM, as each has their own advantage.
MS-SSIM is a good method to compare structural similarities between images, and outperforms
the simpler RMSE method in this. But since we cannot simply use the available accurate color
difference functions – as discussed in see Section 6.1 – for MS-SSIM, we chose to also calculate the
RMSE to get more insight in the color similarities between renders. To calculate the MS-SSIM
between pairs of images, we used code by Forst (2015) and convert the images to grayscale. Note
that this implementation downsizes the input images to 340 × 340 pixels, so shapes smaller than
about 2 to 3 pixels may not contribute to the end result.

If our Seidel method is to be useful in an artistic context where the original lens designs are not
available, it must be doable to set parameter values by hand. This does not seem feasible if there
are seven lens parameters that all depend on the wavelength in different ways, as well as five
Seidel coefficients that depend on both the wavelength and the distance to the entrance pupil. As
was concluded from the evaluation of the influence on the end result of the lens parameters in
Section 5.2, M and dimage→sensor have the greatest influence on the final bokeh shape. This allows
us to reduce the lens parameters to only three: f , zfpp and 1

−M dimage→sensor. Taking this into
consideration, we will evaluate four different simplifications to the parameters that may make this
manual tweaking more feasible:

1. Seidel coefficients fixed and all lens parameters fixed (Fixed Everything),

2. Seidel coefficients only dependent on wavelength (distance set to 103m) and

(a) No lens parameters fixed (Fixed Distance),

(b) All lens parameters fixed, but with wavelength-dependent values for f , zfpp and
1
−M dimage→sensor only (Fixed Most),

(c) All lens parameters fixed (Fixed Parameters).

We will use these simplifications to render the shield scene using all seven lenses. We will then
compare these renders using RMSE and MS-SSIM, as well as by visual inspection.

6.1 Color spaces

As spectral effects on aberrations are a large part of this research, it is essential that we choose
accurate methods to generate and evaluate colors. For this reason, we use the CIE 1931 XYZ
color space (Smith and Guild , 1931), which is an additive color space defined to match human
perception as closely as possible. Every sample that is taken is first given a random wavelength
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between 360 and 830 nm, which is then converted to an XYZ color using a table of CIE 1931 XYZ
color matching function values2, using linear interpolation between the two nearest values.

To calculate the error between two colors, the CIEDE2000 color difference function is used3, which
is designed to be as perceptually-uniform as possible, meaning that the visual difference between
two colors with a certain color difference value will be the same no matter where on the spectrum
the colors reside. In order to use the CIEDE2000 function, the CIEXYZ colors are first converted
into the CIELAB color space using the D65 illuminant.

Additionally, we choose to use a grayscale MS-SSIM implementation, so the color images needed
to be converted to grayscale. For this, we first calculated the luminance as

lumα = 0.27r + 0.67g + 0.06b. (6.1)

But to make sure that the luminance cannot exceed 1, as we need to store it in an 8-bit PNG
image, we set

lumβ = 1− 2−lumα . (6.2)

This makes sure that the luminance never exceeds 1, even when lumα does. This way, any detail
in high-luminance areas is retained when saved as an 8-bit PNG image. We did some testing to see
how MS-SSIM values are impacted when using lumβ instead of lumα. We filled a window of 10×10
pixels with random noise, and calculated the SSIM value of this window compared to iteratively
more randomly offset versions, using both lumα and lumβ . The results of a few passes of this are
plotted in Figure 6.2.

Figure 6.2: SSIM calculations, comparing lumα and lumβ by calculating the SSIM using both
methods on the same 10× 10 pixel input window.

The SSIM values are different between the methods, but the ordering is preserved, which allows
us to safely compare images using lumβ .

2The table can be found at https://github.com/mocabe/CIE-1931-XYZ-Color-Space-Standard-Observer-

Color-Matching-Functions.
3The implementation of the CIEDE2000 color difference function that was used can be found on https://github.

com/gfiumara/CIEDE2000.
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Finally, we convert lumβ into an 8-bit sRGB value by applying a gamma correction4. A resulting
image can be seen in Figure 6.3.

(a) Color (CIEXYZ) (b) Black and white luminance

Figure 6.3: A rendered image and its luminance black and white version.

6.2 Lens choices

Seven lenses were selected to compare, all of which are very different in design and thus in the
image they produce. All lens designs were obtained in ZEMAX file format from http://www.lens-

designs.com/. Below, each selected lens is listed, together with a schematic cross-section and an
SSRT render of one of the test scenes. A characteristic part of the render is enlarged to illustrate
the lens’s unique characteristics.

1. 50mm f/4.5 Double Gauss design from 18975 (Figure 6.4). A simple, primitive lens design
that produces strong aberrations.

(a) Schematic cross-section
(b) Rendered image

Figure 6.4: Double Gauss lens

2. Nikkor 50mm f/1.8 AI-s6 (Figure 6.5). This prime lens was introduced in 1980 and is still
considered a very good, sharp lens. (Note: Nikkor is the name used for lenses produced by
Nikon.)

4The formula used to apply the gamma correction can be found at https://en.wikipedia.org/wiki/SRGB under
Specification of the transformation.

5Based on U.S. Patent 583336, figure 3
6More information on the Nikkor 50mm f/1.8 AI-s is available at https://web.archive.org/web/

20170111074403/http://www.nikkor.com:80/story/0060
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(a) Schematic cross-section
(b) Rendered image

Figure 6.5: Nikkor 50mm lens

3. Nikkor 135mm f/4 (originally known as NIKKOR-QC 13.5cm f/4)7 (Figure 6.6). This lens
was first produced in 1946 and was one of the first lenses produced by Nikon. The lens
produces some clearly visible aberrations, but no major ones.

(a) Schematic cross-section
(b) Rendered image

Figure 6.6: Nikkor 135mm lens

4. A 25mm f/2.2 Petzval lens8 (Figure 6.7). This type of lens was popular in the 19th century,
and is still popular for the extreme ‘swirley bokeh’ effect, caused by a very strong Petzval
aberration. This particular design stems from 1937.

7More about the NIKKOR-QC 13.5cm f/4 can be read at https://web.archive.org/web/20160317213020/http:
//nikkor.com/story/0043/

8Based on U.S. Patent 2158202
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(a) Schematic cross-section
(b) Rendered image

Figure 6.7: Petzval 25mm lens

5. Nikon Pikaichi 35mm f/2.89 (Figure 6.8). This lens was made for cheap compact cameras
and was produced starting in 1982. The lens has a low optical quality and produces many
aberrations.

(a) Schematic cross-section
(b) Rendered image

Figure 6.8: Pikaichi 35mm lens

6. A single lens (Figure 6.9), producing large aberrations. This one has a focal length of around
34mm and an f-stop of around f/3.

(a) Schematic cross-section
(b) Rendered image

Figure 6.9: “Single” 34mm lens

9More about the Nikon Pikaichi 35mm f/2.8 at https://web.archive.org/web/20160627194908/http://nikkor.
com/story/0033/
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7. A 243mm f/4.1 zoom lens (Figure 6.10). From searching online this one is probably modelled
after the Pentax 60-250mm f/4 lens. This is a modern design; the Pentax lens was introduced
in 2007 and is still sold today. It produces very sharp images with little aberrations, though
some are still visible.

(a) Schematic cross-section
(b) Rendered image

Figure 6.10: “Zoom” 243mm lens

6.3 Test images

Three test images were produced, each with their own characteristics to test the applicability of
our implementation in different scenarios. We have the forest scene which has a relatively constant
illumination and no strong highlights, but does have much detail in the leaves of the trees near
the edge of the image. The shield scene does have many strong white highlights in the reflections
of the metal shield, both in the foreground and background, which should produce clear bokeh
shapes. Finally, the skyline scene also has many strong highlights, but they are colored in many
different hues.

The images were rendered with Cinema 4D using a pinhole camera model and with all anti-aliasing
disabled in order to generate a valid surface color and depth value for each pixel. For calculating
the depth values, the distance from the camera point to the pixel was used, ignoring any refractions
or reflections.

For the Nikkor 135mm and Zoom lenses, a modified ‘tele’ version of each image was produced,
because the circles of confusion would otherwise become too large to work with. For the forest and
skyline scenes this was done by merely multiplying the depth map by 3, while a separate image
rendered using a tele lens model was created for the shield scene. The images are shown in Figure
6.11.
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(a) Forest scene RGB (b) Forest scene depth

(c) Shield scene RGB (d) Shield scene depth

(e) Shield tele scene RGB (f) Shield tele scene depth

(g) Skyline scene RGB (h) Skyline scene depth

Figure 6.11: The test images together with their depth maps. The depth maps are processed for
visibility.
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Chapter 7

Results

In this chapter, we present both our qualitative and quantitative results and give each some ex-
planation and interpretation.

7.1 Qualitative analysis

In Figure 7.1, cropped regions of renders using some lenses are shown, using all four methods1. In
every render, Seidel DOF approaches the reference image best. Especially so for the Single and
Double Gauss lenses (Figures 7.1c and 7.1d, respectively), which exhibit the strongest aberrations.
Seidel DOF accurately captures the slight softening effects visible with the Double Gauss lens and
the streaking blurring generated by the Single lens, while both Gaussian DOF and Pencil map
DOF do not.

Generally, the more the bokeh produced by a lens resembles a uniform disk, the smaller the
differences between Seidel, Gaussian and Pencil map DOF get – as is expected, as uniform bokeh
means that the aberrations added in the Seidel simulation are small and that the Pencil map is
fairly uniform. But even in those cases, such as with the Nikkor 135mm (Figure 7.1a) and Zoom
(Figure 7.1b) lenses, Seidel improves over those methods by simulating non-uniform effects like the
bright edge at the right side of the bokeh generated using the Zoom lens.

1We do not include Distortion + vignetting here, as it would mostly resemble Seidel, but without spectral effects.
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(a) Nikkor 135mm (b) Zoom

(c) Single (d) Double Gauss

Figure 7.1: Cropped regions rendered using various lenses.

There are some visible dissimilarities between Seidel and SSRT DOF. The bokeh size is not always
correct, such as in Figures 7.1b and 7.1d. In both cases, the Seidel bokeh is clearly too big when
compared to SSRT. In Figure 7.2, two regions rendered using the Pikaichi 35mm lens are shown,
one close to the optical axis and one further from the optical axis. Close to the optical axis
(Figure 7.2a), Seidel DOF resembles SSRT DOF very well, and no large dissimilarities catch the
eye. But further from the optical axis (Figure 7.2b), some effects are obviously missing from the
Seidel simulation. These are most likely produced by higher order effects and not captured by
the Seidel aberrations. Note, though, that Seidel DOF approaches the reference much better than
both Gaussian and Pencil map DOF. The differences between the methods are similar when using
the Petzval lens, as illustrated in Figure 7.3. Seidel DOF captures the swirly bokeh effect better
than Gaussian and Pencil map DOF, though there are disparities, in this case likely caused by
the simplified optical vignetting implementation, as this effect was determined to be particularly
strong with the Petzval lens (Figure 6.1).
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(a) Close to the optical axis (b) Further from the optical axis

Figure 7.2: Two regions of the shield scene, rendered using the Pikaichi 35mm lens.

(a) Skyline scene (b) Forest scene

Figure 7.3: Two renders made using the Petzval lens.

Figure 7.4 shows two regions of the shield scene rendered using the Nikkor 50mm lens, and il-
lustrates the limitations of both Pencil map DOF and Seidel DOF. Visually, Pencil map DOF
approximates the SSRT reference very well close to the optical axis, but further away it becomes
very obvious that radial aberrations are not included in this simulation. And while Seidel DOF
does include these aberrations, it is visually significantly different from the SSRT reference. This
could again be a limitation of using only the five Seidel aberrations, as the bokeh looks off both
near and far from the optical axis.
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(a) Close to the optical axis (b) Further from the optical axis

Figure 7.4: Two regions of the shield scene, rendered using the Nikkor 50mm lens.

7.1.1 Discussion

The Seidel DOF method approaches the reference method better than Gaussian and Pencil map
DOF. This was expected, as adding Seidel aberrations brings us closer to reality. Though the Seidel
DOF implementation is successful with most of the tested lens designs, it was not so universally.
The dissimilarities are most severe with the Nikkor 50mm lens, where Seidel DOF is not able to
capture the most significant aberrations, as visible in Figure 7.4. This may be due to a lack of
higher order aberrations. Our simplified optical vignetting implementation is probably to blame
for the dissimilarities between Seidel and SSRT DOF with the Petzval lens, as visible in Figure
7.3.

7.2 Quantitative comparison

For each scene and lens combination, the Seidel, Distortion + vignetting, Gaussian and Pencil map
DOF renders were compared to the reference SSRT renders. The results are plotted in Figures
7.5 and 7.6, which show the RMSE and MS-SSIM values of these comparisons, respectively. Note:
all renders that used the Petzval lens used a smaller sensor width (15mm instead of 35mm) as
this lens produces a very small image, as discussed in Chapter 6. But it turned out this was not
enough: there were still small black edges present in SSRT, Seidel and Distortion + vignetting
DOF images, but not in Gaussian or Pencil map images. As comparing these images would increase
the RMSE and MS-SSIM values significantly, we chose to crop the Petzval renders to 90% size in
each dimension (from 1280× 720 to 1152× 648 pixels).

52



(a) RMSE, forest scene (lower is better)

(b) RMSE, shield scene (lower is better)

(c) RMSE, skyline scene (lower is better)

Figure 7.5: RMSE comparison of the four depth of field simulation methods against the SSRT
reference method, using seven different lenses and three different scenes.
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(a) MS-SSIM, forest scene (higher is better)

(b) MS-SSIM, shield scene (higher is better)

(c) MS-SSIM, skyline scene (higher is better)

Figure 7.6: MS-SSIM comparison of the four depth of field simulation methods against the SSRT
reference method, using seven different lenses and three different scenes.

Evidently, Seidel DOF performs best in virtually all cases. There is a handful of cases where
Distortion + vignetting DOF outperforms Seidel DOF, mostly with the Nikkor 50mm and Zoom
lenses, but also once with the Nikkor 135mm lens (RMSE, forest scene). When using the Zoom
lens on the forest scene, Seidel actually finished third in terms of RMSE: even Gaussian DOF
achieves a result that is more similar to the reference image – though all RMSE values here are
fairly similar.

In all cases where Distortion + vignetting DOF outperforms Seidel DOF, the differences are rel-
atively small. The RMSE values are between 9.8% and 21.1% lower, and the MS-SSIM values
are between 0.2% and 1.1% higher. Overall, Seidel DOF approaches the reference images more
consistently than the other methods, as shown by the mean values and standard deviations of the
RMSE and MS-SSIM values, which are plotted in Figure 7.7.
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Figure 7.7: Mean values and standard deviations of the RMSE (lower is better) and MS-SSIM
(higher is better) values of all four methods.

7.2.1 Aberration distances

A light ray with a wavelength of 550 nm originating from a distance of 2 meters was traced
through four lenses using both SSRT (reference) and the three other methods (Seidel, Gaussian
and Distortion + vignetting), at different distances to the optical axis. The aberration distances
– the distances between the sensor coordinates of the reference method and of the other methods
– were then computed, and are plotted in Figure 7.8. The lens is focused at 0.88 meters, so this
light source would produce back bokeh.

(a) Nikkor 50mm (b) Pikaichi 35mm

(c) Single (d) Zoom

Figure 7.8: The aberration distances for four lenses, using a light source of 550 nm at 2 meter
distance, while the lens is focused at 0.88 meters away. The aberration distance is the distance
between the sensor coordinates of the currently used method and the reference method (SSRT).

Using Seidel DOF, the aberration is always (nearly) 0 at the optical axis, and then starts to grow.
Note that slight discrepancies may be introduced here by the different ways of calculating the
sensor position for each method, as described in Section 5.3. With Gaussian DOF, the aberration
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is more constant, while also generally growing when moving away from the optical axis. Distortion
+ vignetting DOF behaves more like Gaussian DOF than Seidel DOF, and sometimes has larger
aberrations than either. With the Single and Pikaichi 35mm lenses, Seidel performs really well,
with very low aberrations overall. With the Nikkor 50mm and Zoom lenses, it starts out performing
really well near the optical axis, but quickly diverges, making the other two methods more accurate
in terms of aberrations.

7.2.2 Runtime

Figure 7.9: Render times in seconds for the different lenses, plotted against the number of lens
elements, and with linear relations fitted to the data.

The time to render an image using each of the five methods is plotted in Figure 7.9. This includes
both the initialization and simulation steps, but the render times can be reasonably interpreted as
the simulation time, as the time the initialization step takes up is negligible – it is only executed
once and is completed in under a second, while the whole render times range between 4,400 and
20,000 seconds.

As each DOF method was used to render three separate images, the mean render times were used,
together with error bars showing the standard deviations. To the data of each DOF method, a
linear relation was fitted using σ−2 as weights (where σ is the standard deviation). With SSRT
DOF, the render time seems to increase linearly with the number of surfaces in the lens, while the
render time is approximately constant for all other methods. The only data points that do not
seem to adhere to the linear relations are those from SSRT, Seidel and Distortion + vignetting
DOF using the Pikaichi 35mm lens. This can be explained by the high number of samples that
do not pass through the lens, and therefore exit the simulations early. The percentage of passing
samples when using SSRT DOF is approximately 69% for the Pikaichi lens, while for other lenses
it lies between 86% and 100% (93%± 6%).

As the graph in Figure 7.9 confirms, the SSRT algorithm runs in O(n) time, where n is the number
of lens surfaces. This can be explained by the fact that each ray has to intersect every surface
when ray tracing the lens. The other algorithms run in O(1) time, due to all coefficients being
calculated at the initialization step.
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7.2.3 Discussion

The quantitative results show that Seidel DOF approaches the reference method better than Gaus-
sian and Pencil map DOF, just as with the qualitative results. What we did not expect was for
Gaussian DOF to outperform Pencil map DOF, as the latter should add at least some aberrations
to the former. This may be because of the pencil map normalization that we used – the circle
of confusion size was dictated by Gaussian optics and not by the pencil map. This could be im-
proved by e.g. creating a formula to calculate the circle of confusion, based on the lens system.
Such modifications could make Pencil map DOF a better competitor to Seidel DOF and make the
comparisons a bit more fair.

Calculating the imaging sensor positions differently for each method could have impacted the
results more than anticipated. This decision was made based on the look of the final image rather
than the math behind them.

7.3 Variation in coefficients and parameters

7.3.1 Seidel coefficients

Besides being a function of the wavelength, the Seidel coefficients are also a function of the distance
to the entrance pupil. In Figures 7.10 and 7.11, the Seidel coefficients of the Single and Zoom lenses,
respectively, are plotted against the distance to the entrance pupil. The dependence on wavelength
is taken into account by rendering the coefficients for many different wavelengths using the CIEXYZ
color associated with those wavelengths.
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Figure 7.10: Plots of the five Seidel coefficients using the Single lens. As the coefficients are a
function of both the distance to the lens and the wavelength of the light, we chose to render the
graphs using the CIEXYZ colors associated with each wavelength and sampling many wavelengths
for each distance.
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Figure 7.11: Plots of the five Seidel coefficients using the Zoom lens. As the coefficients are a
function of both the distance to the lens and the wavelength of the light, we chose to render the
graphs using the CIEXYZ colors associated with each wavelength and sampling many wavelengths
for each distance.

For both lenses, the distance dependence decreases as the distance becomes greater, which happens
more quickly with the Single lens than with the Zoom lens. The wavelength dependence is similar
across the whole distance range, but does vary a lot between the two lenses and between the
different coefficients.
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7.3.2 Lens parameters

In Figure 7.12 and 7.13, the lens parameters are plotted against the light wavelength. Each
parameter is divided by its initial value (at λ = 0.360nm), in order to show the different growth
rates between the various lenses. Some parameters vary a lot, while others seem to stay within
a few percent of the initial value throughout the visible spectrum. The largest difference can be
seen in the front principal plane position, which increases to almost three times the initial value
with the Pikaichi lens. Together with the focal length, this impacts the lateral magnification (as
discussed in Section 5.2.1).

(a) Focal lengths (b) Entrance pupil
radii

(c) Exit pupil
radii

Figure 7.12: Focal lengths, and entrance and exit pupil radii, divided by the initial value (at λ =
360 nm).

60



(a) Entrance pupil
plane positions

(b) Exit pupil
plane positions

(c) Front principal
plane positions

(d) Rear principal
plane positions

Figure 7.13: Entrance and exit pupil plane positions, and front and rear principal plane positions,
divided by the initial value (at λ = 360 nm).

7.3.3 Simplified parameters

In Figure 7.14, the RMSE and MS-SSIM values are calculated between the SSRT reference renders
and the renders made using Seidel with the parameter simplifications as discussed in Chapter 6.
Also included are the results of the full Seidel implementation, as comparison. In Figure 7.15,
the values of 1

−M dimage→sensor are plotted. Interestingly, the curves seem to generally resemble
those of f , which are plotted in Figure 7.12a, even though f itself is not used in the calculation of

1
−M dimage→sensor.
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(a) RMSE, shield scene (lower is better)

(b) MS-SSIM, shield scene (higher is better)

Figure 7.14: RMSE and MS-SSIM comparison of the various Seidel simulation methods, using
seven different lenses and the shield scene.

Figure 7.15: Values of 1
−M dimage→sensor for all lenses.

The rate of success of the simplifications differs per lens, but the results are fairly similar overall.
The Seidel implementation mostly outperforms the simplified implementations when using the
Petzval or Zoom lenses. However, the differences between the simplifications are remarkable when
doing visual inspection. In Figure 7.16a and 7.16b, a region of the renders made using the Double
Gauss and Pikaichi 35mm lenses, respectively, is shown for the original Seidel renders and the
parameter simplifications. Both Fixed Distance and Fixed Most accurately retain the color present
in the Seidel renders, while spectral effects are mostly absent with Fixed Parameters. The Fixed
Everything renders have no spectral effects, as is expected due to the full removal of wavelength
dependence.
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(a) Double Gauss (b) Pikaichi 35mm

Figure 7.16: A region of the shield scene, rendered using the Double Gauss and Pikaichi 35mm
lenses.
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(a) Petzval (b) Nikkor 50mm

Figure 7.17: A region of the shield scene, rendered using the Petzval and Nikkor 50mm lenses.

From the simulations with the Petzval lens, as illustrated in Figure 7.17a, it is clear that the
parameter simplifications are not always sufficient. Here problems arise because the Seidel coeffi-
cients are too dependent on the distance to the entrance pupil to remove the distance dependence
altogether. The same is true for the Nikkor 50mm lens, as illustrated in Figure 7.17b. The circle of
confusion size is clearly a bit smaller in the Seidel method as compared to the simplified variants.
Similarly, the circle of confusion size is reduced when using the simplifications with the Zoom lens,
as illustrated in Figure 7.18.
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Figure 7.18: A region of the shield scene, rendered using the Zoom lens.

7.3.4 Discussion

With the simplified lens parameters we still get pretty good results. But it does come with a cost,
as the distance dependence of the Seidel coefficients cannot always be ignored. It is still hard to
gauge how useful Seidel DOF is when the lens design is unknown and parameters must be set
by hand. We simplified the lens parameters, but did not test how intuitive they might be to an
artist trying to match bokeh to existing footage. There are indications that there exist correlations
between the lens parameters f and 1

−M dimage→sensor as their graphs look alike, this may enable us
to make some more simplifications – but for now, even our simplified parameters may be too much
to handle.
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Chapter 8

Conclusions and future work

In this thesis, we have introduced a novel application of Seidel aberrations, a well-known concept
in optics theory, that has previously only been implicitly implemented in depth of field simulation.
The Seidel DOF method nearly always outperforms other methods when comparing to ray traced
reference images in terms of RMSE and MS-SSIM (Figure 7.7). Near the optical axis, the distance
aberration on the imaging sensor as compared to ray tracing is nearly 0, but increases when the
distance to the optical axis increases (Figure 7.8). For some lenses, the aberration exceeds that of
the other methods (Gaussian, Distortion + vignetting). Seidel takes a constant time per ray, just
like the Gaussian and Pencil map methods, while ray tracing takes linear time. The time saved
by using our method over ray tracing can be significant, especially when using lenses with many
surfaces (for example the Zoom lens, which has 29 surfaces).

Seidel outperforms the other methods most when a lens’s bokeh does not resemble a uniform disk
(Single, Pikaichi 35mm, Double Gauss and Petzval). If the bokeh is more uniformly disk-shaped
(Nikkor 135mm, Zoom), the differences between the methods are smaller, but Seidel still is the
most accurate. For most tested lenses, the most important aberrations are simulated accurately
using Seidel. An exception is the Nikkor 50mm lens, which would benefit from adding higher order
aberrations. Similarly, a more accurate simulation of optical vignetting could improve results with
the Petzval lens, where this effect is especially pronounced and a major factor in generating the
lens’s distinctive swirly bokeh.

If we remove the distance dependence of the Seidel coefficients and reduce the number of lens
parameters from seven to three (f , zfpp and 1

−M dimage→sensor) we still get good results for most
lenses, making the implementation more friendly to manually setting parameters, which makes it
more conceivable that the Seidel method could be used in an artistic context where the original
lens designs are not available. But for some lenses the distance dependence is too strong to be
fully ignored. However, this should not be a problem when the image does not have a large depth
range, as the fixed distance can be set to any number. In our implementation, we set the distance
to 103 meters, while the depth values of the test image were closer to 1 meter.

Improvements can still be made in the simplification of the Seidel algorithm, in order to allow
for simpler and more intuitive parameters. The same goes for the Seidel coefficients: still, all
five coefficients have their own wavelength dependence. There may exist correlations between the
wavelength dependence of the different coefficients, or perhaps the dependence can be modelled
with a simple curve. It would also be interesting to see if wave effects like diffraction, as well as
the effects of coatings and internal reflections could be added using similar parameterizations as
we used in our method.

66



Similar results may also be obtained by combining aspects of multiple methods: perhaps we only
really need wavelength dependence for axial parameters, which would allow for the usage of pencil
maps combined with a monochromatic simulation of the four off-axis Seidel aberrations, making
life even easier when trying to match bokeh to footage taken with unknown lenses.

In conclusion, Gaussian optics extended with Seidel aberrations forms a solid basis for depth of
field simulation. If extended with elements like hole filling it could successfully be used as a post-
process for simulating accurate depth of field. Our implementation simulates rays travelling from
object space → screen space, but should yield similar results the other way around. Reversing the
direction to screen space → object space would allow the use of our method to generate primary
rays in any existing ray tracer.

Figure 8.1: Accurate depth of field simulation can be applied to any image with depth information,
no matter the medium!
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